ZZ→IIvv

Emanuel Strauss Stony Brook University For the D0 Collaboration

Outline

- Motivation
- Events selection and Monte Carlo modeling
- Inclusive Z Rejection
- Likelihood
- Significance and Cross Section measurement
- Conclusion

Motivation

Aside from production with a Higgs boson, the ZZ di-boson process has the lowest cross section and is the last remaining unobserved di-boson process at the Tevatron.

Use the fully leptonic mode $ZZ \rightarrow IIvv$ (where I = electrons and muons):

- Small branching fractions w.r.t jet modes
- Larger branching fractions than the ZZ→IIII
- Manageable Backgrounds
- Requires a large amount of data

Event Selection

Use an OR of single electron (muon) triggers for the di-electron (di-muon) channel.

Di-Electron Cuts:

- p_T > 15 GeV
- Within the central (|η| < 1.1) or forward (1.5 < |η| < 2.5) calorimeter regions
- Tight Isolation
- Tight cut on multi-variate parameter of energy and shower distribution

Di-Muon Cuts:

- p_T > 15 GeV
- Central track match with

 at least 1 hit in the Silicon
 Microstrip Tracker (SMT)
 - A distance of closest approach < 0.02 cm
- Tight calorimeter isolation

Additionally, require that there be ≤ 2 jets and no additional charged leptons

Two data taking periods (Runlla and Runllb) are combined for 2.2 fb⁻¹ of data

Monte Carlo Modeling

The W+Jets background is generated using ALPGEN and is normalized using a jet to lepton mis-identification rate measured in data.

All other backgrounds are generated using PYTHIA and are normalized to the Z peak in data (70 to 110 GeV) using their relative NLO theoretical cross sections after correcting for the luminosity profile, trigger efficiency, and lepton id efficiency.

Missing E_T

To reduce the contribution of mismeasured MET build a variable sensitive to "true MET" Define the recoil activity as a combination of:

- Uncertainty of the di-lepton p_T
- MET
- Jet Activity
- Track Activity

Inclusive Z Rejection

Recoil Activity

_vent yields alter the out.

WW is the largest remaining background

diem	dimu
0.3 ± 0.15	0.45 ± 0.24
3.81 ± 0.03	3.30 ± 0.03
14.87 ± 0.4	10.4 ± 0.3
18.69 ± 0.4	13.7 ± 0.3
25	17
	diem 0.3 ± 0.15 3.81 ± 0.03 14.87 ± 0.4 18.69 ± 0.4 25

Likelihood Performance

Construct a likelihood to discriminate between the ZZ and the main remaining irreducible backgrounds (WW and W+Jets)

The variables used are:

- Di-lepton Mass
- Leading Lepton p_T
- ΔΦ(lead lepton, di-lepton pair)
- Cosine of the scattering angle of the negative lepton in the di-lepton rest frame

Calculating the Significance

The significance is determined by calculating the probability that the background fluctuate up to our observed values from 20000 pseudo-experiments.

We Find:

$$\sigma^{ZZ} = 2.1 \pm 1.1(stat.) \pm 0.4(sys.)$$
 pb

Predicted Standard Model cross section: 1.6 ± 0.1 pb

	di-electron		di-muon		combined	
	expected	observed	expected	observed	expected	observed
$\overline{CL_b}$	0.9247	0.8860	0.8900	0.9948	0.9613	0.9918
p-value	0.0753	0.1140	0.1100	0.0052	0.0387	0.0082
significance	1.44	1.21	1.23	2.57	1.77	2.40

vertical red line: median of the S+B distributions vertical black line: value observed from data

Conclusion

- 2.4 σ measurement of ZZ \rightarrow IIvv using 2.2 fb⁻¹ of data
- Demonstrated the effectiveness of using the Recoil Activity as a measure of the "true" Missing ${\rm E}_{\!_{\rm T}}$

• Find $\sigma(ZZ) = 2.1 \pm 1.1 \pm 0.4 \text{ pb}$

Backup Slides

Recoil Activity

To reduce the contribution of fake MET no direct cut on MET \rightarrow build a variable sensitive to "true MET"

- decompose di-lepton p_{T} in 2 components with respect to thrust axis:
 - a_i : sensible to p_T mis-measurement
 - a,: sensible to recoil activity mis-measurment
- build a variable which gives more weight to a_t (add in quadrature with different weights) →
- balance against activity in the opposite hemisphere and correct using the corresponding uncertainties

Result:

• by construction all uncertainties and mis-reconstruction can ONLY reduce the value of $\not \! E_T$

Systematics

- Not sensitive to global MC scale factor (normalize to data under the Z peak)
- JET related uncertainties:
 - → absolute value of JES
 - ✓ relative JES data/MC
 - Jet Energy Resolution
 - → Jet efficiency in JSSR
- Lepton resolution
- Modeling of the "Corrected MET variable"
 - the falling edge is integrated in data and MC and extrapolated to the threshold scale factor for the background
- Uncertainties on $Z/\gamma^* \rightarrow II$ cross section
- Uncertainties on the acceptance ratio A_z / A_{zz}
- Normalization of the W+jet background from the matrix method
 - Iimited statistics after cut on "corrected MET"
 - → uncertainties on the fake rate

Likelihood Variables

Construct a likelihood to discriminate between the ZZ and the main remaining irreducible background (WW)

The variables used are:

- Di-lepton Mass
- Leading Lepton p_{T}
- ΔΦ(lead lepton, di-lepton pair)
- Cosine of the scattering angle of the negative lepton in the di-lepton rest frame

Dilepton pT

Cross Section

Fit 1-CL_{S+B} distribution as a function of a xsection scale factor
 Evaluate differential distribution of 1-CL_{S+B}

