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Motivation of Boosted Searches
I Idea gained traction in 2008 by Butterworth, Davison, Rubin, and Salam as a

way to recover V (H → bb̄) channels.

◦ Causes system to be more central (better tagging performance)
◦ Additional background handles (additional jet activity)

I By consequence, overlapping signal jets: ∆Rbb̄ ' 1√
z(1−z)

mH

pT

I Fine segmentation of ATLAS and CMS calorimeters allows exploration of jet
substructure.
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Boosted Objects at the LHC
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The future played out differently, but boost is
a real part of LHC analyses:

I CMS (ATLAS) V (H → bb̄), three (five)
VpT bins

http://arXiv.org/abs/0802.2470v2
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Boosted Objects at the LHC
I ATLAS triggers on “Fat” jets with ∆R = 0.1
I Boosted top analyses have their best mass resolution in the high pT bin.

◦ All three decay products fully contained in a single jet
◦ QCD pT spectrum falls off rapidly

I MC Simulation does an admirable job of describing the data (due to immense
amount of validation and performance work).

http://cds.cern.ch/record/1571040
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Approaches to Substructure: N-Subjetiness

I Designed to identify boosted
hadronically-decaying objects like EW
bosons and top quarks.

◦ Boosted bosons: 2 energetic,
narrow, sub-jets.

◦ QCD jets: several broader sub-jets.

I τN = 1
d0

∑
k

pT ,kmin
A

∆RA,k

◦ k – sum over jet constituents
◦ A – Minimize distance to candidate

subjet axes

I W/Z/H tagging with τ2/τ1,
top tagging with τ3/τ2

I “Intuitively” measures likelihood
system is compatible with n-prong
structure.

http://arxiv.org/abs/1011.2268, http://arxiv.org/abs/0806.0023v2
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Other Approaches

Mass Drop

I Decompose the jet evolution.

I Given a hard jet, perform iterative
decomposition.

◦ Using Cambridge-Achen jet
clusering

I Find a subjets with mj1 < µmj2

I And y = min(pT1,pT2)(̇∆R12)2

m2
jet

I Originally proposed to improve
H → bb̄ selection.

MVA Tagger

I Attack the dimensionality problem.

I Many (well motivated) features
describe a reconstructed jet.

I Use planar flow, jet shapes, etc. . .

http://arxiv.org/abs/0802.2470, http://arxiv.org/abs/1012.2077
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Jets as Images

Most focus on a top-down approach (variables motivated by an analytical
understanding of the problem), we tackle the problem from the bottom up.

Jet identification and sub-structure is generally
treated as a form of cluster analysis. Towers can just as easily be treated as the pixels of an

image.

Uniform basis, with much lower dimensionality than machine vision (625 cells for
∆η × φ = 0.1× 0.1, instead of ∼1M for a picture)
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From Computer Vision To Jet Classification

Techniques for producing numerical values or decisions from high-dimensional data.

Mapping gender recognition onto jet identification:

I Face detection

◦ Face region of interest finding
◦ Eye detection

I Face preprocessing

◦ Geometric transformation
◦ Equalization
◦ Noise reduction / smoothing
◦ Masking

I Facial recognition / discrimination

◦ Transformations
◦ Training and using a

discriminator

I Jet finding

◦ Jet clustering
◦ Grooming
◦ Principal axis finding

I Jet preprocessing

◦ Geometric transformation
◦ Normalization
◦ Masking

I Jet tagging / discrimination

◦ Transformations
◦ Training and using a

discriminator

Demonstrate proof of principle using Monte Carlo with an idealized detector
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Practically Speaking

I Picking a representation

◦ Considering only calorimeter towers (no track information)
◦ Enforce a uniform representation by projecting the calorimeter energies onto a

∆η ×∆φ = 0.1× 0.1 grid
◦ Perform clustering (Anti-kT with ∆R = 1.2) to find jets, apply jet trimming

with radius 0.3 and f = 0.05.
◦ Keep 25× 25 cells, centered around the jet.
◦ Each jet is described by an uncurled row vector of cell energies (length = 625).

I Each jet is now uniformly defined by a single feature vector.

I Same number of variables per jet.

I Complete representation of the physics (within tower granularity).

I Set of feature vectors defines a feature space.

I Easily lends itself to feature extraction and dimensionality reduction.
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Case Study: W vs Light Jets

I Great system for algorithm development and validation

I Well known system with several attractive features:

◦ W decays to two quarks should be composed of two distinct hard sub-jets.
◦ Decays have a fundamentally different energy pattern than QCD jets (for

comparable jet masses).
◦ Thoroughly explored in the litterature (N-Subjetiness, MVA Tagger, etc. . . ).

If the method works here, it gives us good reason to try other systems as well.
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Image Processing
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Image Processing
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Building the Discriminant

Consistent “image” representation for calorimeter objects.

Average W Jet Average Light Jet

Now, turn this information into a number we can cut on.
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Fisher’s Linear Discriminant
Finding a subspace which represents most of the data variance:

I Map same class sample vectors in a single spot of the feature representation.

◦ Minimize within class differences: Sw =
C∑
i=1

N∑
j=1

(xj − µi )(xj − µj)
T

I Map those of different classes as far apart from each other as possible.

◦ Maximize between class differences: Sb =
C∑
i=1

(µi − µ)(µi − µ)T

Find the basis vector V for: SbV = (Sw + σ2I )Vλ

(Actually, even easier in the two class case.)
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Visualizing the Classifier

Radiation around 1st
subjet in light jets

No info in presence
of 1st subjet

Hard 2nd
subjet in W-jets

Wide 2nd 
subjet in light jets

QCD-like
W-like
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Classifier Performance
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Classifier Performance
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Unique Information

Jet Mass [GeV] Jet Mass [GeV]

τ2 / τ1 τ2 / τ1
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Robustness

I Facial identification techniques are designed to perform well in the presence of
deteriorated face images.
◦ Gaussian noise

◦ Salt and Pepper

◦ Bluring

◦ Partial Input

I A priori expect the method to work well based on the success in facial
identification litterature.
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pT Dependence

I Fisher discriminant is trained in 50 GeV bins

◦ Improves the image “resolution”
◦ Easier to generate MC to probe the full pT spectrum

I Binning could be optimized, or extended into other variables.

I Performance is robust against jet pT
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Effects of Pileup

I One of the main challenges at the LHC

◦ Additional interactions per bunch crossing
(in-time)

◦ Calorimeter integration time over multiple
crossings (out-of-time)

I Additional event energy

I Increased fluctuations in the jet resolution
noise term.

I Increased number of “fake” jets
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Pileup
Investigate effect of pileup by overlaying additional Pythia Minbias events.

I Train on samples without pileup

I Test on W and L samples with < µ >= 0 and 30.

< µ >= 0
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< µ >= 30

I Note: statistically independent and differently distributed samples
◦ Pre-selection for sig (bkg) increases by a factor of 1.5 (7).
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Radial Energy Smearing

I Simulate the energy spread introduced by electromagnetic and hadronic
showers in calorimeters.

I Use an ATLAS-like setup with EM and HAD showers.

No Smearing
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Radial Energy Smearing

http://atlas.physics.arizona.edu/~loch/
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Generator Model
I Check Pythia vs Herwig: want to see no sensitivity to differences
I Use the same discriminant (trained on Pythia jets)
I Similar performance when tested on Pythia or Herwig jets
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Binning The Classifier
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Binning The Classifier
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Case Study: H → bb̄ vs g → bb̄

I The canonical example par excellence

◦ Jet substructure looks very different, even if mass, pT , etc. . . are the same.

I Potential for large boost in 14 TeV dataset.

◦ Natural extension for moderately boosted analysis at 8 TeV
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I Most powerful handle to date: BDRS corrected invariant jet mass

◦ Potential to exploit additional b-tagging.
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Discriminant Performance
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300 < HpT < 350 GeV, 110 < mjj < 125 GeV,

inclusive ∆R classifier

I Performance is about the same before and after cuts on BDRS

I Can get x10 rejection for ∼70% acceptance using both.
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Case Study: q vs g

Most new physics is expected to produce quark jets, rather than gluon-initiated jets.

I SUSY cascade decays: g̃ → qq̄χ0
1

I Heavy Z ′ → qq̄ or W ′ → qq′

And interesting SM physics tends also to produce quark-jets.

I tt̄ to 4 or 6 quarks

I Vector Boson Fusion

I Boosted top, W, and Higgs!

I Switch from “fat” jets ∆R = 1.2→ 0.6
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q vs g Performance
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I Bottom-up approach performs identically to jet width.
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Wrap Up
I Generic method for calorimeter tagging using computer vision techniques

◦ Many other systems to study: top vs light, particle ID (e.g. photon vs φ0),
b-tagging

◦ Pileup detection and suppresion
◦ Most important conceptual step is the image paradigm, the rest is “simple”

I Provides a powerful tool for gaining physics insight

I In cases studied, performance is as good as, or better, than analytically
motivated variables.

I Many parameters to varry in pre-processing
◦ Normalization, center fixing, scaling, boosting, whitening
◦ Alternative basis (e.g. cell pT pairs, instead of cell pT )

I Lots of room for extensions to the method
◦ The contents of this talk covers up to the year ∼2000 in the litterature

? Not limited to using linear classifiers in a two-class problem

◦ Baseline method mature enough for application to LHC analyses
◦ Documentation is being written up (expect it on the arxiv soon)
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Backup Slides
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Processing Time

I Method is extremely fast – O(1ms) per jet
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